Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 13: 889138, 2022.
Article in English | MEDLINE | ID: covidwho-1875415

ABSTRACT

Background: Individuals with secondary immunodeficiencies belong to the most vulnerable groups to succumb to COVID-19 and thus are prioritized for SARS-CoV-2 vaccination. However, knowledge about the persistence and anamnestic responses following SARS-CoV-2-mRNA vaccinations is limited in these patients. Methods: In a prospective, open-label, phase four trial we analyzed S1-specific IgG, neutralizing antibodies and cytokine responses in previously non-infected patients with cancer or autoimmune disease during primary mRNA vaccination and up to one month after booster. Results: 263 patients with solid tumors (SOT, n=63), multiple myeloma (MM, n=70), inflammatory bowel diseases (IBD, n=130) and 66 controls were analyzed. One month after the two-dose primary vaccination the highest non-responder rate was associated with lower CD19+ B-cell counts and was found in MM patients (17%). S1-specific IgG levels correlated with IL-2 and IFN-γ responses in controls and IBD patients, but not in cancer patients. Six months after the second dose, 18% of patients with MM, 10% with SOT and 4% with IBD became seronegative; no one from the control group became negative. However, in IBD patients treated with TNF-α inhibitors, antibody levels declined more rapidly than in controls. Overall, vaccination with mRNA-1273 led to higher antibody levels than with BNT162b2. Importantly, booster vaccination increased antibody levels >8-fold in seroresponders and induced anamnestic responses even in those with undetectable pre-booster antibody levels. Nevertheless, in IBD patients with TNF-α inhibitors even after booster vaccination, antibody levels were lower than in untreated IBD patients and controls. Conclusion: Immunomonitoring of vaccine-specific antibody and cellular responses seems advisable to identify vaccination failures and consequently establishing personalized vaccination schedules, including shorter booster intervals, and helps to improve vaccine effectiveness in all patients with secondary immunodeficiencies. Trial registration: EudraCT Number: 2021-000291-11.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Multiple Myeloma , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization, Secondary , Immunocompromised Host , Immunoglobulin G , Immunologic Memory , Multiple Myeloma/therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Vaccination
2.
Vaccine ; 39(51): 7375-7378, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1488002

ABSTRACT

Patients undergoing immunosuppressive treatments have a higher need for protection against coronavirus disease (COVID19) that follows infection with the SARS-CoV-2 virus but their ability to respond sufficiently to COVID vaccines is uncertain. We retrospectively evaluated SARS-CoV-2 spike subunit 1 (S1)-specific antibody levels after two mRNA doses in 242 patients with underlying chronic inflammatory, hematooncological or metabolic diseases and in solid organ transplant recipients. S1-specific antibodies were measured 30 days after the second dose. In 15.9% of these patients, no S1-specific antibodies were detectable. Non-responsiveness was linked to administration of B-cell depleting therapies as well as to ongoing therapies that block lymphocyte trafficking (Fingolimod) or inhibit T cell proliferation (Tacrolimus). Thus, it is important to inform immunosuppressed patients about the risk of vaccine non-responsiveness and the necessity to maintain non-pharmaceutical protection measures. In these risk patients antibody testing and cellular analysis are helpful to estimate the benefit/responsiveness to further booster vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Antibody Formation , Humans , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL